If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2h^2-24=0
a = 2; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·2·(-24)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*2}=\frac{0-8\sqrt{3}}{4} =-\frac{8\sqrt{3}}{4} =-2\sqrt{3} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*2}=\frac{0+8\sqrt{3}}{4} =\frac{8\sqrt{3}}{4} =2\sqrt{3} $
| b+b+2b=180 | | 12x+3+13=-4x | | 5(n-2)-15=4-(2n+5) | | 4n+6=3n=10=n-2 | | 12x+3+13=-14x | | 6x+15-4x=7x | | -2(x+2)-6=20 | | 6x+15+-4x=7x | | 5x+x+2x-12=60 | | 15p-10=8p+25 | | 3/4=-1+4/k-4 | | a-1/7=2/7 | | 15x=10x+50 | | x.20/3=5/18 | | 10d-5=4d-15-3d | | 8x=11x-13 | | -q=-3 | | 8x=46 | | 3x+2=18 | | 3x/4-7/4=5x12 | | 2x+5=17 | | Y=4/x+^x+0.2-5x | | 30x-42-4x+6=68 | | 2x+0.4=8 | | 5x-4=-21x+126 | | A=1/2h+5= | | 6u−3u=15 | | 11w−2w=18 | | √24+2x=x | | 295=n/2(29+3n) | | y/5+10=30 | | k/5.6+97.1=28.8 |